θ -> α Phase Transition in Thermally Grown Aluminas: Mechanisms and Control

B. W. Veal, A. P. Paulikas, R. C. Birtcher Materials Science Division, Argonne National Laboratory

Motivation

- Structural components operating at high temperatures (e.g., turbine blades) rely on thermally grown oxides for corrosion protection.
- · For longer lifetime operation and higher operating temperatures, improved oxides are needed.
- · For this purpose, improved understanding of oxide growth mechanisms is needed.

Introduction

- The first formed oxide is θ -Al₂O₃ which transforms to α -Al₂O₃ at T>1000C.
- But corrosion protection is provided by α-Al₂O₃.
- The probability of failure increases with oxide thickness.
- Thus, it is desirable to accelerate the transformation to keep oxide thin.

Accomplishment

- We establish that the early stage θ -phase development is strongly influenced by the presence of external nucleation sites and that these sites can be exploited to dramatically reduce θ -phase growth.
- We determine that fine particles of α -Al₂O₃, trapped in the sample surface during the final step in the sample polishing procedure, will act as nucleation sites.
- We present a simple model that provides an excellent quantitative description of the oxide evolution.

Model: Oxidation of β-NiAl at 1100 C

6-АЦО3 6-> Q

 $\theta\text{-Al}_2O_3(\text{yellow})$ forms before $\alpha\text{-Al}_2O_3$ and grows rapidly. The oxide grows at the top surface (Al outward diffusion). $\alpha\text{-Al}_2O_3$ (blue) subsequently nucleates and grows at the buried Interface by $\bar{\theta} \, \Box \, \alpha$ conversion.

11

III

 α -Al₂O₃ at buried interface cuts off outward flow of Al atoms. When metal/oxide interface becomes completely covered with α -Al₂O₃, the growth of θ -Al₂O₃ stops and new oxide growth is α -Al₂O₃ that results from $\tilde{\theta} \square \alpha$ conversion.

When θ is totally consumed, α -Al₂O₃ scale grows much more slowly at metal/oxide interface (steady state growth).

Left panels: oxide thickness, α and θ phase strains for diamond polished sample.

Right panels: same for alumina polished sample. For the alumina polish, conversion is much more rapid leaving a thinner oxide when conversion is complete. Strains are initially tensile in $\alpha\textsc{-Al2O3}$, compressive in $\theta\textsc{-Al2O3}$. Solid lines are model calculations

In-situ measurements at APS

with in-plane compressive stress
specimen surface d_n

with in-plane compressive stress

- (a) Schematic of the experimental setup.
- (b) Half rings of α -Al₂O₃ reflections from oxidized NiAl sample. Strain is obtained from elliptical distortion of rings.
- (c) Full α -Al₂O₃ Debye-Scherrer rings from the alumina reference.

With in-plane stress, Debye-Scherrer diffraction rings are elliptically distorted.

Applied Physics Letters (submitted)

